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national-level patterns to the regional level. Together, these methods ensure consistency with 

established demographic projections while adding crucial sub-national granularity. 
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Executive Summary 

 

Understanding the future risks posed by climate change requires realistic projections of population 

dynamics, not only in terms of overall size but also in their detailed demographic and socioeconomic 

composition. Exposure to hazards depends both on where people live and, on their characteristics, such 

as age, sex, and educational attainment, which shape vulnerability and adaptive capacity. Despite their 

importance, projections at the sub-national level that integrate these dimensions remain scarce. 

 

This report presents a multidimensional dataset that disaggregates the Wittgenstein Centre’s 

population projections to the NUTS-2 regional level across Europe. The dataset provides projections for 

five age groups (under 15, 15–24, 25–44, 45–64, and 65+), disaggregated by sex, and—starting from 

age 25—further differentiated by three levels of educational attainment based on ISCED categories: 

low (0–2), medium (3–4), and high (5–8). To achieve this, different modelling approaches were 

employed: age distributions were derived using a neural network architecture, educational attainment 

through a Bayesian time series framework, and sex ratios by applying national-level patterns scaled to 

the regional context. 

 

This work forms part of WP3, which examines the socioeconomic factors that shape exposure, 

vulnerability, and adaptive capacity to climate change. By producing granular socioeconomic scenarios 

at national and sub-national levels, the outputs strengthen the evidence base for assessing 

vulnerabilities with Earth observation and AI methods, analysing gender-specific risks, and supporting 

inclusive, long-term adaptation strategies. 

 

Key Words 
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1  Summary 

 

Improving our understanding of future risk from climate change requires realistic projections of future 

populations, both in their size and distribution. Distribution refers not only to geographic breakdowns 

but also to the breakdown by important characteristics, such as age, sex, and educational attainment. 

While the location where people will live may determine future exposure to hazards, population 

characteristics also co-determine the degree of vulnerability and the capacity to adapt to changing 

environmental conditions. Despite the importance of these factors, there remains a paucity of 

population projections (or disaggregation thereof) at the sub-national level. 

This report details the modelling procedures employed to generate a multidimensional dataset that 

disaggregates the Wittgenstein Centre’s population projections 1  at the NUTS-2 2  regional level. The 

disaggregation covers five age groups (under 15, 15–24, 25–44, 45–64, and 65+), two sexes (female 

and male), and—starting from age 25—three levels of educational attainment, corresponding to ISCED 3 

0–2 (low), ISCED 3–4 (medium), and ISCED 5–8 (high). 

The age was derived using a neural network architecture; the educational attainment dimension was 

derived a Bayesian time series modelling approach, and the sex dimension was obtained by applying 

national-level sex ratios, adjusted and scaled to the regional level. 

The report is organized into three chapters, each addressing one of the dimensions—age, sex, and 

educational attainment. 

 

This work is part of WP3, which addresses the socioeconomic factors shaping exposure, vulnerability, 

and adaptive capacity to climate change. Our contribution focuses on developing granular 

socioeconomic scenarios for the EU at national and sub-national levels. These scenarios provide critical 

inputs for assessing vulnerabilities with Earth observation and AI methods (Task 3.2) and for analysing 

gender-specific vulnerabilities and societal transformations (Task 3.3). By integrating detailed 

demographic, social, and economic data, the work strengthens the evidence base for more inclusive 

and effective adaptation strategies. 

 

 

 
1 https://pure.iiasa.ac.at/id/eprint/19487/ and  

  https://dataexplorer.wittgensteincentre.org/wcde-v3/  
2 We limited our disaggregation to the NUTS-2 level due to severe data limitations regarding age 

structure and educational attainment at the NUTS-3 level; extending the analysis to this finer spatial 

scale remains a planned direction for future development. 
3https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=International_Standard_Classification_of_Education_(ISCED) 
 

https://protect.checkpoint.com/v2/r02/___https:/pure.iiasa.ac.at/id/eprint/19487/___.YzJlOmlpYXNhOmM6bzo3ZTJlZDA4ZGRhOWQzZGZiZDU3Yjc1YmJjNTg5NGY3Yjo3OmNiMzI6ZmE0NmVkZTM4ZjM2ZDFlNTI2MmQwNWMxNWIzOGNlYjEwYzE4OGMyOGM2YWRkM2JkZDI4OGVhMTQzZWJlODU5NzpwOlQ6Tg
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_Standard_Classification_of_Education_(ISCED)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_Standard_Classification_of_Education_(ISCED)
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2 The age dimension 

Understanding the age structure of future populations is essential for assessing vulnerability and 

adaptive capacity in the face of climate change (Yao et al. 2025; Sestito et al. 2025; Chen et al. 2024; 

Achebak et al. 2019). While most projections focus on national-level totals, sub-national age 

distributions are equally critical, particularly in regions like Europe where both demographic and 

climatic conditions vary substantially across space. To address this gap, we developed a machine 

learning-based model to downscale age-specific population projections—based on the Shared 

Socioeconomic Pathways (SSPs)—to the NUTS-2 level across 35 European countries 4 . This section 

describes the methodology and outcomes of this disaggregation, which supports more realistic and 

spatially-explicit assessments of future climate-related vulnerability. 

 

2.1 The data sources 
1- The Eurostat Database 5: provides the NUTS-2 breakdown of the age-specific baseline population 

across 35 countries. The information is reported yearly starting from 1990 until 2023 and for five-yearly 

age groups from "under 5" up to "75+". For a detailed overview of data coverage, see Table 1 in the 

Appendix. 

2- The Wittgenstein Centre Human Capital Data Explorer6 (WCDE): provides SSP-coherent age-specific 

population information at the country level for 2020-2100 (forthcoming, also for the historical period 

1950-2015) (KC et al. 2024).  

The different SSP scenario assumptions for the population age structure in Europe can be summarized 

as follows:  

 

 

 

 

 

 

 

 

 

 

 

 
4 AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, EL, ES, FI, FR, HR, HU, IE, IS, IT, LT, LU, LV, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE, 
SI, SK, UK. 
5https://ec.europa.eu/eurostat/databrowser/explore/all/all_themes?lang=en&display=list&sort=category 
6 https://dataexplorer.wittgensteincentre.org/wcde-v3/ 
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Scenario Fertility Mortality Migration Comments 

SSP1 – Sustainability / 

Rapid Social 

Development 

Low (Low10) 7 Low Medium 

Very low fertility and longer lifespans, even 

with moderate immigration, lead to strong 

population aging across most European 

countries. 

SSP2 – Middle-of-

the-Road / 

Continuation 

Medium Medium Medium 

Fertility remains below replacement but 

declines more slowly than in SSP1. Combined 

with medium mortality and migration, this 

produces population aging at a more gradual 

pace. 

SSP3 – Fragmentation 

/ Stalled Development 
Low High Low 

Low birth rates, shorter lifespans, and limited 

immigration drive both population decline 

and significant aging. 

SSP4 – Inequality Low Medium High 

Extremely low fertility strongly accelerates 

aging. High migration introduces younger 

cohorts, slightly moderating but not 

reversing the trend toward an older 

population. 

SSP5 – Conventional 

Development 
Low (Low10) Low Medium 

Similar to SSP1: very low fertility and longer 

lifespans drive significant aging, despite 

some immigration. 

 

 

 

 

 
7 The Low10 fertility scenario is an additional low-fertility scenario where education-specific Total Fertility Rates 
(TFRs) are 10% lower than the medium fertility assumptions up to the year 2040, with the difference subsequently 
increasing to 12.5% lower than the medium fertility assumptions by 2060 and remaining at that level until 2100. This 
scenario is specifically used in SSP1 and SSP5 for low-fertility countries. 
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3- Harvard Dataverse 8 : provides the "Global 1- km Downscaled Urban Land Fraction Grids, SSP-

Consistent Projections and Base Year, v1 (2000 - 2100)" (Gao and Pesaresi 2021) and the "Global 1-km 

Downscaled Population Grids, SSP-Consistent Projections and Base Year, v1.01 (2000 - 2100)" (Gao 

2017; 2020). This downscaled information can be grouped at the NUTS-2 level to generate total 

population counts and urban land fractions to be used in the construction of the independent variables. 

 

2.2 Modelling Approach 
To produce SSP-consistent age disaggregation at the NUTS-2 level, we followed a strategy inspired by 

previous work (Striessnig et al. 2019) that develops separate models for each age group. This modular 

approach increases accuracy by reducing model complexity and allowing for targeted tuning. We 

focused on five age groups: under 15, 15–24, 25–44, 45–64, and 65+, chosen for their relevance in 

terms of labour market dynamics (Loichinger 2015), education (Lutz et al. 2008), and climate 

vulnerability (Otto et al. 2017). Based on this categorization, we developed a disaggregation model 

tailored to each age group. 

We employed feedforward artificial neural networks (ANNs) (Carvalho et al. 2011) to model the age-

group shares at the regional level. These models are well-suited to capture complex, non-linear 

relationships and allow for flexible integration of multiple scenario pathways. Key covariates included 

regional-level demographic indicators derived from Eurostat and urbanization and accessibility 

measures from Harvard Dataverse. SSP-based national projections from the Wittgenstein Centre 

served as the top-down constraint. 

Given the limited training data (for each age group, we obtain a data set of 1245 observations) and the 

risk of overfitting, we used a simplified version of the Selective Improvement Evolutionary Variance 

Extinction (SIEVE, De Rigo et al. (2005)) framework to stabilize the training process and improve 

robustness. This approach progressively selects and refines the best-performing feedforward neural 

networks—based on mean absolute error—to efficiently optimize the choice of initial weights across 

age-specific models. 

For full methodological details and validation results, please refer to Tamburini, Bosco and Striessnig 

(2025, forthcoming)9. 

To generate subnational age-group projections aligned with the SSPs, we modelled relative age-group 

proportions rather than absolute population counts. Specifically, the dependent variables were defined 

as the ratio of a region's age-specific population share to the corresponding national share—allowing 

 

 

 
8 https://dataverse.harvard.edu/ 
 
9 Tamburini, Andrea, Claudio Bosco and Erich Striessnig. 2025 (forthcoming). A neural network architecture 
for disaggregating age-specific population projections to the sub-national level. IIASA Working Paper. 
Laxenburg, Austria: WP-25-xx 
 

https://protect.checkpoint.com/v2/r02/___https:/dataverse.harvard.edu/___.YzJlOmlpYXNhOmM6bzo1MDdjMDhkMWYyNTBmNTA1MmQ2MzVjZWQ2ZjEzYzU5Mjo3OmFjMzE6YzNlYTExY2RiZTY3NzIxMDZkZDY1OGRiOGE4OGRiOWFjZWZlODgwNzY3YWY0NmRkNzIwYzJlNjc3ZTQyZGY0MTpwOlQ6Tg
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for intuitive interpretation and consistent scaling with external population totals. These ratios were 

modelled separately for each of five age groups using a tailored feedforward neural network (Simp-

SIEVE-NN), trained on a set of 53 covariates that included historical age structure trends, urbanization, 

national-level features, and regional clustering (for a detailed list of the covariates see Table 3 in the 

Appendix.). Extensive preprocessing steps—such as correlation filtering, standardization and 

covariates selection—were applied to reduce redundancy and ensure robust training. 

The simplified SIEVE approach, adapted for this task, enabled both improved performance and 

uncertainty quantification. Compared to two baseline models—one that predicts by repeating the most 

recent observation and another that predicts using the average of the previous five ratios—our method 

achieved, in testing phase, substantially higher explained variance (Expl. Var. > 0.856 for all age groups), 

with consistent uncertainty bounds across predictions. Even in more challenging groups like 15–24, 

where spatial mobility is high, the model remained unbeaten by the selected competitors. By 

incorporating multiple neural networks, the Simp-SIEVE-NN framework captures the variability in 

model behaviour, represented by prediction intervals. For a complete technical description of the 

model design, training process and validation, please refer to the accompanying working paper 

(Tamburini et al. (2025), forthcoming). 

 

2.3 Results 
Across all Shared Socioeconomic Pathway (SSP) scenarios, Europe is projected to undergo pronounced 

population aging, driven by persistently low or declining fertility rates and increasing life expectancy. 

The extent and pace of this demographic shift vary by scenario, with the most severe aging observed 

under low-fertility, low-migration assumptions. Building on this understanding, we used national-level 

population structures, SSP-specific projections for total populations at the NUTS-2 level, and regional 

urbanization rates to apply our five age-specific models recursively. This enabled us to generate 

detailed subnational disaggregations of the national-level results. 

As reported in Figure 1, the findings confirm that aging will affect all European regions, but its 

progression is uneven. Socio-economic characteristics strongly influence the trajectory, with regions 

that include or coincide with national urban centres typically experiencing a slower rate of aging. These 

spatial disparities underline the importance of considering regional heterogeneity in future planning 

and adaptation efforts. 
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Figure 1: Population projections, age group 65+ for different SSPs and time period. For interval 2020-2024 
the plot reports the proportion, for the projected ones, the difference between the 2020-2024 one and its 
future proportion in the different SSPs. 
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3 The sex dimension 

The sex dimension, together with age, plays a fundamental role in determining sensitivity to climate 

change, particularly in the context of demographic aging. Women’s higher observed life expectancy 

contributes to a feminization of older age cohorts, which has direct implications for health care needs, 

dependency ratios, and overall vulnerability. During pregnancy, exposure to extreme heat or air 

pollution can increase the risk of complications such as preterm birth, low birth weight, and 

developmental issues (Pinho-Gomes et al. 2024; Achebak et al. 2019; Vésier and Urban 2023). 

Recognizing this, we extended our projection framework by incorporating sex-specific information 

consistently across time, space, and scenario.  

 

3.1 The data sources 
For this exercise, the data are obtained from two sources:  

1- The Eurostat Database: provides the NUTS-2 breakdown of the age-SEX-specific baseline 

population across 35 countries. The information is reported yearly starting from 1990 until 2023 and 

for five-yearly age groups from "under 5" up to "75+". For a detailed overview of data coverage, see Table 

1 in the Appendix. 

2- The Wittgenstein Centre Human Capital Data Explorer (WCDE): provides SSP-coherent age-Sex-

specific population information at the country level for 2020-2100. 

 

3.2 Modelling Approach 
Instead of developing a new model for the sex disaggregation, we adopted a pragmatic approach that 

leverages existing national-level projections from the Wittgenstein Centre, which include age-specific 

sex ratios under the five SSP scenarios. These national trajectories were then aligned with regional-

level historical data on sex ratios by age group, sourced from the Eurostat database, ensuring 

consistency with observed patterns. 

Using this alignment, we applied SSP-specific national trends to adjust the most recent observed 

regional sex ratios and projected their evolution forward in time. These adjusted ratios were then used 

to disaggregate the total population projections by age group (produced in the previous modelling step) 

into male and female components for each NUTS-2 region, scenario, and time interval. 

In other words, for each age group, the national level future development of the sex ratios was applied 

to the regional level sex-ratios under the assumption that they move, independently of their final 

observed value according to the national level schedule.  

The result is a fully harmonized dataset capturing population projections by sex and age group at the 

subnational level, consistent with both observed regional structures and the overarching scenario 

narratives. This method offers a coherent and efficient way to reflect differential demographic 
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dynamics while maintaining internal consistency with the SSP framework and ensuring compatibility 

across modelled dimensions. 

We do not explicitly model the evolution of sex ratios at the subnational level for each age group. 

Instead, we rely on the national-level trends provided by the Wittgenstein Centre projections and apply 

these uniformly across regions. This simplification means that potential region-specific deviations in 

male and female dynamics—such as sex-selective migration patterns—are not directly captured. 

Nonetheless, the method still robustly reflects differences in life expectancy between men and women 

and ensures consistency with the SSP-specific assumptions, making it a reasonable and scenario-

coherent compromise given the available data. 

 

3.3 The results 
The results of the sex ratio modelling for European regions show the expected age-related pattern. At 

younger ages, the sex ratio is close to parity, with values around 0.5 reflecting the near balance between 

men and women at birth and in early adulthood. In contrast, for the age group 65+, the ratio shifts 

clearly in favour of women, a direct consequence of their higher life expectancy compared to men. This 

imbalance is illustrated in Figure 2 for the NUTS-2 regions of Slovakia, where the predominance of 

women in older ages is evident but gradually flattens toward parity over the course of the century, in 

line with the projected improvements in male life expectancy. 

 

 

 
Figure 2: Sex ratio for age group 65+ in the Slovak regions according to SSP scenarios 
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4 Educational attainment dimension 

Education plays a decisive role in shaping adaptive capacity to climate change and climate extremes, 

not only by strengthening access to information, knowledge, and skills necessary for adaptation, but 

also indirectly through its association with higher income, better employment opportunities, and 

enhanced access to resources; higher education is frequently associated with greater awareness and 

knowledge of risk prevention, whereas low educational attainment has been directly linked to increased 

mortality risk during extreme events such as heat hazards, thereby making the level of education a key 

factor in reducing vulnerability and improving resilience (Yang et al. 2021; Sestito et al. 2025; Reid et al. 

2009) 

 

4.1 The Data Source 
The dataset lfst_r_lfsd2pop from Eurostat provides regional population estimates (in thousands) 

disaggregated by sex, age group, and educational attainment level at the NUTS-2 level, based on the EU 

Labour Force Survey. Educational attainment is reported using the ISCED classification (low, medium, 

high), enabling a multidimensional analysis of regional population structures across Europe. For our 

analysis, we were able to extract consistent data for 21 countries, covering all the NUTS-2 regions 

included in the age dimension analysis—with the exception of FI20 (Åland) and the overseas 

departments of France, due to missing data (For a detailed overview of data coverage, see Table 2 in the 

Appendix). Despite some gaps and sampling variability, particularly in smaller regions and earlier years, 

this dataset remains the most harmonized and comprehensive source for regional educational 

attainment available at the European level and serves as the historical input for our modelling. 

 

4.2 Modelling Approach 
Modelling educational attainment distributions over time requires a flexible and robust statistical 

approach, especially when accounting for heterogeneity across countries, sexes, and demographic 

scenarios. Traditional models often work with level-based latent processes; however, log-returns, 

defined as first differences of log-transformed shares, offer several advantages in dynamic 

compositional modelling: 

 

- Variance stabilization: Log-returns reduce heteroskedasticity common in share-based data. 

- Additivity: They allow modeling changes additively in log-space, aligning well with 

autoregressive structures. 

- Compositional compatibility: When exponentiated and normalized, they map naturally back to 

the unit simplex. 
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Building on this data transformation, we employed a Bayesian time series modeling framework. This 

class of models was chosen because of its ability to both handle and explicitly quantify uncertainty in 

the input data, which in our case are derived from survey sources and therefore subject to sampling 

variability and measurement error. Beyond uncertainty quantification, Bayesian time series models also 

allow the incorporation of prior information, hierarchical structures, and flexible parameter estimation, 

making them particularly suitable for cross-country and multi-dimensional applications. Our 

specification extends a latent-trend multinomial framework into the log-return space, capitalizing on 

the benefits of log-returns for capturing relative changes while introducing stratification by country 

(N), sex (S), and scenario (P). After the usual MCMC posterior sampling of predictive counts from the 

multinomial model, we applied a correction procedure to align the results with two key sets of external 

marginal constraints—regional population projections (by country, region, sex, age, and scenario) and 

national education category projections (by country, sex, category, age, and scenario). This adjustment 

was implemented using a two-dimensional Iterative Proportional Fitting (IPF) algorithm enhanced with 

entropy regularization, ensuring internal consistency while preserving the statistical structure of the 

sampled distributions. The resulting structure is robust to heterogeneous regional dynamics and 

varying starting years across countries, ensuring greater comparability and reliability of trend 

estimates across diverse demographic and geographic contexts. 

 

4.2.1 Notation 
 

Symbol Description 

 

N Number of countries 

Rn Number of regions in country n 

S Number of sexes 

T Number of time points 

A Number of age groups 

C Number of education categories (fixed at 3) 

P Number of projection scenarios 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑛𝑛] Initial modeled year for country n 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝,𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎  Log-probability for country n, region r, …  
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝,𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎 First-order difference of log-probabilities 
𝑁𝑁𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎 Region’s population by age  

 

 

4.2.2 Time Rescaling 

Each country’s time series is rescaled to [0, 1] to support cross-national trend pooling: 
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛,𝑡𝑡 =  
𝑡𝑡 − 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑛𝑛]
𝑇𝑇 − 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑛𝑛]

 

4.2.3 Priors 

We place country- and sex-specific priors on both latent initial states and return dynamics: 

𝜏𝜏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛,𝑠𝑠,𝑎𝑎 ∼ Γ(1,0.1) 

𝜏𝜏_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛,𝑠𝑠,𝑎𝑎 ∼ Γ(1,0.1) 

𝜇𝜇_𝛽𝛽 𝑛𝑛,𝑠𝑠,𝑐𝑐,𝑎𝑎
∼ 𝑁𝑁(0,1) 

𝜏𝜏_𝛽𝛽𝑛𝑛,𝑠𝑠,𝑐𝑐,𝑎𝑎 ∼ Γ(1,0.1) 

𝛽𝛽 𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑎𝑎∼𝑁𝑁 �𝜇𝜇_𝛽𝛽 𝑛𝑛,𝑠𝑠,𝑐𝑐,𝑎𝑎
, 𝜏𝜏_𝛽𝛽−1𝑛𝑛,𝑠𝑠,𝑐𝑐,𝑎𝑎� 

 

4.2.4 Latent Process in Log-Return Space 

4.2.4.1 Initialization 

At the initial year 𝑡𝑡 =  𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑛𝑛], log-probabilities are initialized as: 

 

log𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡init[𝑛𝑛],𝑎𝑎 ∼ 𝒩𝒩�0, τinit,𝑛𝑛,𝑠𝑠,𝑎𝑎
−1 � 

4.2.4.2 Dynamic Evolution 

From 𝑡𝑡 =  𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[𝑛𝑛] + 1, onward, log-returns are drawn and accumulated additively: 
 

log-return𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎 ∼ 𝒩𝒩�β𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑎𝑎, τreturn,𝑛𝑛,𝑠𝑠,𝑎𝑎
−1 � 

log 𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎 = log 𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡−1,𝑎𝑎 + log-return𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎  

4.2.5 Probability Transformation and Likelihood 

After computing log-probabilities for c = 1, 2, the third category is derived via normalization: 

α𝑛𝑛,𝑟𝑟,𝑠𝑠,1,𝑡𝑡,𝑎𝑎 = 1 

α𝑛𝑛,𝑟𝑟,𝑠𝑠,2,𝑡𝑡,𝑎𝑎 = exp�log 𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,1,𝑡𝑡,𝑎𝑎� 

α𝑛𝑛,𝑟𝑟,𝑠𝑠,3,𝑡𝑡,𝑎𝑎 = exp�log 𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,2,𝑡𝑡,𝑎𝑎� 

𝑍𝑍𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎 = �α𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎

3

𝑐𝑐=1

 

𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎 =
α𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎

𝑍𝑍𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎
 

𝑦𝑦𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎 ∼ Multinomial�𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,1:3,𝑡𝑡,𝑎𝑎,𝑁𝑁𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎� 

 

In forward projections where total population varies by scenario: 

𝑝𝑝𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎,𝑝𝑝 = 𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎 ⋅ 𝑁𝑁𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎,𝑝𝑝 

 

This formulation preserves model uncertainty while enabling scenario-based benchmarking. 
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4.2.6 Model Highlights and Advantages 

- Log-returns provide a more stable and interpretable structure for temporal dynamics in 

compositional data. 

- Sex and country dimensions enable nuanced trend estimation across diverse demographic 

structures. 

- Handles varying region counts via per-country regional indexing Rn. 

- Capable of integrating alternative future scenarios (P ) without retraining. 

 

4.2.7 Post-Processing: Entropy-Regularized IPF Adjustment 

After sampling posterior predictive counts 𝑝𝑝𝑝𝑝𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎,𝑝𝑝   from the multinomial model, we apply a 

correction procedure to ensure coherence with two types of external marginal constraints: 

1. Regional population projections 𝑁𝑁𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎,𝑝𝑝 (by country n, region r, sex s, age a, scenario p) 

2. National education category projections PoPnat𝑛𝑛,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎,𝑝𝑝(by country n, sex s, category c, 

age a, scenario p) 

This is achieved through a two-dimensional Iterative Proportional Fitting (IPF) algorithm enhanced 

with entropy regularization. 

 

4.2.7.1 Algorithm Overview 

Let 𝑋𝑋(0) = pp𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎,𝑝𝑝
sample  denote the initial [𝑅𝑅𝑛𝑛 × 𝐶𝐶]  matrix for a given iteration. At each iteration z, we 

perform: 

  
𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛: 

𝑋𝑋𝑟𝑟,𝑐𝑐
(𝑧𝑧+1/2) = 𝑋𝑋𝑟𝑟,𝑐𝑐

(𝑧𝑧) ⋅
𝑁𝑁𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎,𝑝𝑝

∑ 𝑋𝑋𝑟𝑟,𝑐𝑐
(𝑧𝑧)

𝑐𝑐
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

𝑋𝑋𝑟𝑟,𝑐𝑐
(𝑧𝑧+1) = 𝑋𝑋𝑟𝑟,𝑐𝑐

(𝑧𝑧+1/2) ⋅
PoPnat𝑛𝑛,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎,𝑝𝑝

∑ 𝑋𝑋𝑟𝑟,𝑐𝑐
(𝑧𝑧+1/2)

𝑟𝑟
 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟:  

        

𝑋𝑋𝑟𝑟,𝑐𝑐
(𝑧𝑧+1) ← 𝑋𝑋𝑟𝑟,𝑐𝑐

(𝑧𝑧+1) ⋅ exp�λ ⋅ log�
𝑋𝑋𝑟𝑟,𝑐𝑐

(𝑧𝑧+1)

𝑋𝑋𝑟𝑟,𝑐𝑐
(0) �� 

Where 𝜆𝜆 is a regularization parameter. 

 

4.2.7.2 Entropy Regularization 

The entropy penalty acts as a stability constraint to prevent over-fitting of marginal targets. It 

preserves relative proportions from the initial posterior while still enforcing the desired marginal 

structure. Formally, it is inspired by minimizing the Kullback-Leibler divergence (Kullback and Leibler 

1951) between the updated matrix and the original posterior draw. 

This leads to solutions that are: 
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- Numerically stable 

- Less prone to over-adjustment 

- Consistent with both data-driven and projection-derived marginals 

 

4.2.7.3 Application to Scenario Coherence 

Since the marginal totals 𝑁𝑁𝑛𝑛,𝑟𝑟,𝑠𝑠,𝑡𝑡,𝑎𝑎,𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 PoPnat𝑛𝑛,𝑠𝑠,𝑐𝑐,𝑡𝑡,𝑎𝑎,𝑝𝑝  are SSP scenario (p) coherent, the IPF 

procedure inherently enforces scenario alignment for the posterior estimates. 

 

Each posterior sample is thus reweighted per-scenario, ensuring internal consistency of subnational 

projections with national-level assumptions across all dimensions: country, sex, age, and scenario. 

 

4.2.7.4 Convergence and validation 

To ensure the reliability of the Bayesian time series model, we assessed convergence using standard 

diagnostics, including the Gelman-Rubin statistic (R̂) and visual inspection of trace plots across chains. 

All key parameters showed satisfactory convergence, with R̂ values close to 1 and stable, well-mixed 

traces. In terms of validation, due to the lack of suitable gold-standard data for direct comparison, we 

employed an indirect validation strategy. Specifically, we verified the internal coherence of the results 

by comparing aggregated projections to national-level distributions by educational attainment, as well 

as to regional distributions disaggregated by age and sex. This consistency across hierarchical levels 

and dimensions supports the plausibility of the model outputs and increases confidence in their use for 

scenario-based population analyses. 

 

4.3 Results 
We produce disaggregated projections by age group, sex, and educational attainment for 21 countries, 

focusing on three key adult age groups: 25–44, 45–64, and 65 and older. For a detailed overview of data 

coverage, see Table 2 in the Appendix. 

The projection results indicate a consistent improvement in educational attainment across Europe, 

with a steady decline in the share of the low-education group and corresponding growth in the mid- 

and high-education categories. These gains, however, evolve at different paces by sex, with 

educational expansion progressing more slowly among men and more rapidly among women. Despite 

these improvements, the overall composition of the population begins to stagnate after 2040, 

particularly among younger cohorts, as their absolute size declines due to sustained low fertility and 

accelerated population ageing. As a result, the relative growth of the elderly population becomes more 

pronounced, reshaping the demographic balance and tempering the impact of continued educational 

expansion among the youth. 
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Figure 3: Educational attainment composition, in thousands of units, for three selected Italian regions in the 
5 SSP scenarios. Age group: 25-44, sex: male. 

 

 
Figure 4: Educational attainment composition, in thousands of units, for scenario SSP-2 for four selected 
Polish regions according to the sex. Age group: 65+ 
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6 Appendix 
Table 1: Age-sex dimension geographical scope. 

Country Number of Regions NUTS-2 Regions 

AL 3 AL01, AL02, AL03 

AT 9 AT11, AT12, AT13, AT21, AT22, AT31, AT32, AT33, AT34 

BE 11 BE10, BE21, BE22, BE23, BE24, BE25, BE31, BE32, BE33, BE34, BE35 

BG 6 BG31, BG32, BG33, BG34, BG41, BG42 

CH 7 CH01, CH02, CH03, CH04, CH05, CH06, CH07 

CY 1 CY00 

CZ 8 CZ01, CZ02, CZ03, CZ04, CZ05, CZ06, CZ07, CZ08 

DE 38 DE11, DE12, DE13, DE14, DE21, DE22, DE23, DE24, DE25, DE26, DE27, DE30, DE40, DE50, DE60, DE71, 

DE72, DE73, DE80, DE91, DE92, DE93, DE94, DEA1, DEA2, DEA3, DEA4, DEA5, DEB1, DEB2, DEB3, DEC0, 

DED2, DED4, DED5, DEE0, DEF0, DEG0 

DK 5 DK01, DK02, DK03, DK04, DK05 

EE 1 EE00 

EL 13 EL30, EL41, EL42, EL43, EL51, EL52, EL53, EL54, EL61, EL62, EL63, EL64, EL65 

ES 19 ES11, ES12, ES13, ES21, ES22, ES23, ES24, ES30, ES41, ES42, ES43, ES51, ES52, ES53, ES61, ES62, ES63, 

ES64, ES70 

FI 5 FI19, FI1B, FI1C, FI1D, FI20 

FR 27 FR10, FRB0, FRC1, FRC2, FRD1, FRD2, FRE1, FRE2, FRF1, FRF2, FRF3, FRG0, FRH0, FRI1, FRI2, FRI3, FRJ1, 

FRJ2, FRK1, FRK2, FRL0, FRM0, FRY1, FRY2, FRY3, FRY4, FRY5 

HR 2 HR03, HR04 

HU 8 HU11, HU12, HU21, HU22, HU23, HU31, HU32, HU33 

IE 3 IE04, IE05, IE06 

IS 1 IS00 

IT 21 ITC1, ITC2, ITC3, ITC4, ITF1, ITF2, ITF3, ITF4, ITF5, ITF6, ITG1, ITG2, ITH1, ITH2, ITH3, ITH4, ITH5, ITI1, ITI2, 

ITI3, ITI4 

LT 2 LT01, LT02 

LU 1 LU00 

LV 1 LV00 

ME 1 ME00 

MK 1 MK00 

MT 1 MT00 

NL 12 NL11, NL12, NL13, NL21, NL22, NL23, NL31, NL32, NL33, NL34, NL41, NL42 

NO 7 NO01, NO02, NO03, NO04, NO05, NO06, NO07 

PL 17 PL21, PL22, PL41, PL42, PL43, PL51, PL52, PL61, PL62, PL63, PL71, PL72, PL81, PL82, PL84, PL91, PL92 
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PT 7 PT11, PT15, PT16, PT17, PT18, PT20, PT30 

RO 8 RO11, RO12, RO21, RO22, RO31, RO32, RO41, RO42 

RS 4 RS11, RS12, RS21, RS22 

SE 8 SE11, SE12, SE21, SE22, SE23, SE31, SE32, SE33 

SI 2 SI03, SI04 

SK 4 SK01, SK02, SK03, SK04 

UK 41 UKC1, UKC2, UKD1, UKD3, UKD4, UKD6, UKD7, UKE1, UKE2, UKE3, UKE4, UKF1, UKF2, UKF3, UKG1, 

UKG2, UKG3, UKH1, UKH2, UKH3, UKI3, UKI4, UKI5, UKI6, UKI7, UKJ1, UKJ2, UKJ3, UKJ4, UKK1, UKK2, 

UKK3, UKK4, UKL1, UKL2, UKM5, UKM6, UKM7, UKM8, UKM9, UKN0 

 

Table 2: Age-sex-education dimension geographical scope 

Country N_Regions Region_Codes 

AT 9 AT11, AT12, AT13, AT21, AT22, AT31, AT32, AT33, AT34 

BE 11 BE10, BE21, BE22, BE23, BE24, BE25, BE31, BE32, BE33, BE34, BE35 

BG 6 BG31, BG32, BG33, BG34, BG41, BG42 

CZ 8 CZ01, CZ02, CZ03, CZ04, CZ05, CZ06, CZ07, CZ08 

DE 38 DE11, DE12, DE13, DE14, DE21, DE22, DE23, DE24, DE25, DE26, DE27, DE30, DE40, DE50, DE60, DE71, DE72, DE73, 

DE80, DE91, DE92, DE93, DE94, DEA1, DEA2, DEA3, DEA4, DEA5, DEB1, DEB2, DEB3, DEC0, DED2, DED4, DED5, DEE0, 

DEF0, DEG0 

DK 5 DK01, DK02, DK03, DK04, DK05 

ES 19 ES11, ES12, ES13, ES21, ES22, ES23, ES24, ES30, ES41, ES42, ES43, ES51, ES52, ES53, ES61, ES62, ES63, ES64, ES70 

FI 4 FI19, FI1B, FI1C, FI1D 

FR 22 FR10, FRB0, FRC1, FRC2, FRD1, FRD2, FRE1, FRE2, FRF1, FRF2, FRF3, FRG0, FRH0, FRI1, FRI2, FRI3, FRJ1, FRJ2, FRK1, 

FRK2, FRL0, FRM0 

HR 2 HR03, HR04 

HU 8 HU11, HU12, HU21, HU22, HU23, HU31, HU32, HU33 

IE 3 IE04, IE05, IE06 

IT 21 ITC1, ITC2, ITC3, ITC4, ITF1, ITF2, ITF3, ITF4, ITF5, ITF6, ITG1, ITG2, ITH1, ITH2, ITH3, ITH4, ITH5, ITI1, ITI2, ITI3, ITI4 

LT 2 LT01, LT02 

NL 12 NL11, NL12, NL13, NL21, NL22, NL23, NL31, NL32, NL33, NL34, NL41, NL42 

PL 17 PL21, PL22, PL41, PL42, PL43, PL51, PL52, PL61, PL62, PL63, PL71, PL72, PL81, PL82, PL84, PL91, PL92 

PT 7 PT11, PT15, PT16, PT17, PT18, PT20, PT30 

RO 8 RO11, RO12, RO21, RO22, RO31, RO32, RO41, RO42 

SE 8 SE11, SE12, SE21, SE22, SE23, SE31, SE32, SE33 

SI 2 SI03, SI04 

SK 4 SK01, SK02, SK03, SK04 
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Table 3: Covariates list for the age disaggregation model 

Variable Code Variable Meaning 

g.pop.NUTS2 Growth of the population in NUTS-2 region 

lag1.tot_pop_NUTS2 5-years lag tot. pop. In NUTS-2 region 

lag2.tot_pop_NUTS2 10-years lag tot. pop. In NUTS-2 region 

lag1ratio.tot_pop_NUTS2 Ratio of 5- and 10-years lag tot. pop. in NUTS-2 region 

lag1_under15 5-years lag under 15 pop 

lag1_15_24 5-years lag under 15-24 pop 

lag1_25_44 5-years lag under 25-44 pop 

lag1_45_64 5-years lag under 45-64 pop 

lag1_65 5-years lag under 65+ pop 

lag2_under15 10-years lag under 15 pop 

lag2_15_24 10-years lag 15-24 pop 

lag2_25_44 10-years lag 25-44 pop 

lag2_45_64 10-years lag 45-64 pop 

lag2_65 10-years lag 65+ pop 

lag1_g_under15 5-years lag growth under 15 pop 

lag1_g_15_24 5-years lag growth 15-24 pop 

lag1_g_25_44 5-years lag growth 25-44 pop 

lag1_g_45_64 5-years lag growth 45-64 pop 

lag1_g_65 5-years lag growth 65+ pop 

lag1_quot_under15 Ratio between regional and national proportion, age under 15, 5-years lag.  

lag1_quot_15_24 Ratio between regional and national proportion, age 15-24, 5-years lag. 

lag1_quot_25_44 Ratio between regional and national proportion, age 25-44, 5-years lag. 

lag1_quot_45_64 Ratio between regional and national proportion, age 45-64, 5-years lag. 

lag1_quot_65 Ratio between regional and national proportion, age 65+, 5-years lag. 

lag2_quot_under15 Ratio between regional and national proportion, age under 15, 10-years lag.  

lag2_quot_15_24 Ratio between regional and national proportion, age 15-24, 10-years lag. 

lag2_quot_25_44 Ratio between regional and national proportion, age 25-44, 10-years lag. 

lag2_quot_45_64 Ratio between regional and national proportion, age 45-64, 10-years lag. 

lag2_quot_65 Ratio between regional and national proportion, age 65+, 10-years lag. 

ctry_prop_under15 Proportion at the country level 

ctry_prop_15_24 Proportion at the country level 

ctry_prop_25_44 Proportion at the country level 

ctry_prop_45_64 Proportion at the country level 

ctry_prop_65 Proportion at the country level 

lag1_ctry_prop_under15 Proportion at the country level, 5-years lag 

lag1_ctry_prop_15_24 Proportion at the country level, 5-years lag 

lag1_ctry_prop_25_44 Proportion at the country level, 5-years lag 

lag1_ctry_prop_45_64 Proportion at the country level, 5-years lag 

lag1_ctry_prop_65 Proportion at the country level, 5-years lag 

lag2_ctry_prop_under15 Proportion at the country level, 10-years lag 

lag2_ctry_prop_15_24 Proportion at the country level, 10-years lag 

lag2_ctry_prop_25_44 Proportion at the country level, 10-years lag 

lag2_ctry_prop_45_64 Proportion at the country level, 10-years lag 

lag2_ctry_prop_65 Proportion at the country level, 10-years lag 

lag1_ctry_pop_g_under15 Proportional growth of the country population, age under 15, 5 years lag. 

lag1_ctry_pop_g_15_24 Proportional growth of the country population, 15-24, 5 years lag. 

lag1_ctry_pop_g_25_44 Proportional growth of the country population, 25-44, 5 years lag. 

lag1_ctry_pop_g_45_64 Proportional growth of the country population, 45-64 5 years lag. 

lag1_ctry_pop_g_65 Proportional growth of the country population, 65+, 5 years lag. 

cluster_1 Belongs to cluster 1 (dichotomous variable) 
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cluster_2 Belongs to cluster 2 (dichotomous variable) 

cluster_3 Belongs to cluster 3 (dichotomous variable) 

urb_frac Percentage of urbanised surface in the NUTS-2 region.  
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